M

XVI. Science Data Systems

SPACE SCIENCES DIVISION

A. Near-Maximal-Length Cycles With Linear Feedback Shift Registers, M. Perlman

1. Introduction

The state of the s

The behavior of synchronously operated shift registers with linear logic feedback has been studied in detail (e.g., Ref. 1). An r-stage linear feedback shift register (FSR) can be used to realize cycle lengths of 2^r-1 , which are termed maximal. The simplest of these, in terms of the complexity of the feedback logic, are those with two-tap feedback which satisfy the linear recurrence relationship

$$a_n = a_{n-i} \oplus a_{n-r} \tag{1}$$

The subscript n in Eq. (1) refers to the clock pulse time. The bit being fed back at time n is a_n , the modulo 2 sum (i.e., EXCLUSIVE-OR) of the contents of the *i*th and *r*th stages at time n. The initial state of the *i*th stage is a_{-i} where n = 0.

Unfortunately, there are many values of r for which maximal-length cycles cannot be realized with two feed-

N67-29157

back taps (see Ref. 2). In these cases, four or a higher even number of taps are required. As the number of feedback taps increases, the complexity of the feedback function grows sharply. The question then arises: Are near-maximal-length cycles realizable with linear FSRs having feedback functions less complicated than a four-input modulo 2 summer? It will be shown that cycle lengths of 2^n-2 and 2^n-4 can be realized with s-stage linear FSRs. The feedback functions are (with few exceptions) effectively a three-input modulo 2 summer.

2. Generalized r-Stage FSR With Linear Feedback

In Fig. 1, the stages of the register are designated (left to right) S_1, S_2, \dots, S_r . The output of stage S_i is connected to the input of the modulo 2 summer when $C_{r-i} = 1$. C_0 is always 1, otherwise fewer than r stages would be in use. The external input e is a Boolean constant.

Let x_i represent the present state and X_i the next state of stage S_i . The next state of each stage may be expressed as a linear Boolean function of the present state of one or more stages.

$$X_{1} = C_{r-1} x_{1} \oplus C_{r-2} x_{2} \oplus \cdots \oplus C_{1} x_{r-1} \oplus x_{r} \oplus e$$

$$X_{2} = x_{1}$$

$$X_{3} = x_{2}$$

$$\vdots$$

$$\vdots$$

$$X_{r} = x_{r-1}$$

$$(2)$$

This may be expressed as

or

$$\mathbf{X} = T\mathbf{x} \oplus \mathbf{L} \tag{4}$$

Rules of modulo 2 arithmetic are used in determining X. The $r \times r$ Boolean matrix T is nonsingular since its row (column) vectors are linearly independent (Ref. 3). It is termed an associated matrix. T represents the linear transformation of an r component vector (present state of the register) into another r component vector (next state of the register). L represents a translation. When nonzero (i.e., e = 1), the modulo 2 sum of the column vector L and Tx represents the complementation of the bit being fed back. A linear transformation T followed by a translation is called an affine transformation (Ref. 3). Every translation is one-to-one and has an inverse, and the linear transformation T is one-to-one and has an inverse. Hence, the affine transformation $Tx \oplus L$ is oneto-one and has an inverse. This is another way of saying that each state has a unique predecessor (or equivalently, distinct states have distinct successors).

Of primary interest are the feedback combinations that yield the longest possible cycle length.

CASE I:

$$e = 0$$

Therefore,

$$\mathbf{L} = 0$$

and

$$\mathbf{X} = T\mathbf{x}$$

This case has been thoroughly analyzed (see Refs. 1 and 4) and is summarized here. The smallest value of k for which $T^k = I$ is the length of the longest possible cycle.

The divisibility properties of $\phi(\lambda)$, the characteristic polynomial of T, and k are related as follows:

The smallest value of k for which

$$\phi(\lambda) \mid \lambda^k - 1 \tag{5}$$

is the length of the longest cycle which always contains the state $00 \cdots 01$. In general,

$$\phi(\lambda) = |T - \lambda I| = \lambda_r + C_{r-1} \lambda^{r-1} + \cdots + C_1 \lambda + 1$$
(6)

For simplicity, + is used to represent modulo 2 addition. Also, -1 appears as +1 since $-1 \equiv 1 \mod 2$. In accordance with the Caley-Hamilton theorem (Ref. 3),

$$\phi(T) = T^k - I = 0$$

and

$$T^k = l$$

Thus, if $\phi(\lambda)$ divides $\lambda^k - 1$ [i.e., $\phi(\lambda)$ is a factor of $\lambda^k - 1$], T satisfies $\lambda^k - 1$ and $T^k = I$. The polynomial of the lowest degree which is satisfied by a square matrix A is the minimal polynomial $m(\lambda)$ of A, and it is unique. Fortunately, as will be shown, $\phi(\lambda) = m(\lambda)$ for the associated matrix T.

When $\phi(\lambda)$ is irreducible, the smallest k for which (5) holds is termed the exponent to which $\phi(\lambda)$ belongs. To obtain the longest possible cycle length of an r-stage FSR, one must find an irreducible $\phi(\lambda)$ of degree r which belongs to a maximum exponent. The maximum cycle length is

$$k=2^r-1$$

The exponent of an irreducible polynomial of degree r which is not maximum divides $2^r - 1$. For every positive integer r, there are $[\varphi(2^r - 1)]/r$ polynomials of degree r that belong to a maximum exponent of $2^r - 1$. The Euler phi-function $\varphi(n)$ is the number of positive integers no greater than the integer n that are relatively prime to n.

Irreducibility is a necessary, but not sufficient, condition for $\phi(\lambda)$ to belong to a maximum exponent. A $\phi(\lambda)$ of degree r that belongs to a maximum exponent characterizes an r-stage maximal length FSR.

Cycle lengths for irreducible polynomials through degree 19 are given in Ref. 5. Irreducible polynomials of degree r>1 will always have an odd number of terms, otherwise $\phi(\lambda)$ will contain $\lambda+1$ as a factor. Irreducible trinomials of maximum exponent characterize maximal length FSRs with the simplest feedback logic; namely, a two-input modulo 2 summer. As previously stated, trinomials are not always among the $[\phi(2^r-1)]/r$ irreducible polynomials of maximum exponent. A conjecture, which has since been proven true, states that every trinomial of degree 8 m ($m=1,2,\cdots$) is reducible. This is a sufficient, but not necessary, condition for a trinomial to be reducible.

For repeated irreducible factors such as $\phi(\lambda) = [g(\lambda)]^{\mu}$,

$$k_{\phi} = e(\nu)k_{g}$$

where $e(v) = 2^i$ and i is an integer such that $1 \le (2^i/v) < 2$.

Tabulated below are values of $e(\nu)$ for ν from 1 through 10.

ν	e(v)	ν	e(v)
1	1	6	8
2	2	7	8
3	4	8	8
4	4	9	16
5	8	10	16

In general, for

$$\phi(\lambda) = [g_1(\lambda)]^{\mu_1} [g_2(\lambda)]^{\mu_2} \cdots [g_m(\lambda)]^{\mu_m}$$

where $g_1(\lambda)$, $g_2(\lambda)$, ..., $g_m(\lambda)$ are irreducible,

$$k_{\phi} = LCM \left[e(\nu_1) k_{g_1}, e(\nu_2) k_{g_2}, \cdots, e(\nu_m) k_{g_m} \right]$$

where LCM denotes the least common multiple.

CASE II:

$$e=1$$

Then

$$\mathbf{L} = \left[\begin{array}{c} 1 \\ \mathbf{0} \\ \cdot \\ \cdot \\ \mathbf{0} \end{array} \right]$$

and

$$X = Tx \oplus L$$

The transformation T and the translation L may be combined by bordering T with L to the right as a column, below with r zeros, and below and to the right by a single entry one (Ref. 3). The matrix equation (Eq. 3) can thus be written as

The present state x is bordered with a *one* to make it conformal with the bordered T matrix and to perform the necessary complementation (i.e., translation) in the feedback to S_1 in Fig. 1. The next state vector X is also bordered just as x. The *one* in the last row appears for each successive transformation. The matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{T} & \mathbf{L} \\ \mathbf{0} & 1 \end{bmatrix} \tag{8}$$

¹Made by S. W. Golomb, formerly of JPL Section 331.

Fig. 1. Generalized r-stage FSR with linear feedback

is of the order r+1 by r+1 and includes the translation L. The characteristic polynomial of A is

$$\theta(\lambda) = \begin{bmatrix} T & \lambda I & \mathbf{L} \\ 0 & 1 - \lambda \end{bmatrix} \tag{9}$$

$$\theta(\lambda) = (\lambda + 1) \, \phi(\lambda) \tag{10}$$

where $\phi(\lambda)$ is the characteristic polynomial of T. Just as T, A is nonsingular for all combinations of values of C_r , where $1 \leq i < r$ and $C_0 = 1$. It will be shown that $\theta(\lambda)$ is minimal for A, just as $\phi(\lambda) = m(\lambda)$ for T. Note that the $\lambda + 1$ in Eq. (10) accounts for the complementation of the bit being fed back. The degree of $\phi(\lambda)$ determines the number of stages required. When the feedback of an FSR characterized by $\phi(\lambda)$ is complemented, it will be designated by $\phi(\lambda)^*$ where $\phi(\lambda)^* = [\theta(\lambda)]/(\lambda + 1)$.

3. The Minimal Polynomial of the T and A Matrices

Every square matrix satisfies a unique polynomial, called the minimal polynomial. The minimal polynomial $m(\lambda)$ of a square matrix B is the polynomial of *lowesi* degree for which m(B) = 0. Furthermore, $m(\lambda)$ divides every polynomial which is satisfied by B (Ref. 3). Therefore, $m(\lambda) | \phi(\lambda)$ where $\phi(\lambda)$ is the characteristic polynomial of B.

The length of the longest cycle of an FSR with linear logic feedback is related to the divisibility properties of $m(\lambda)$. Only when $\phi(\lambda) = m(\lambda)$, can $\phi(\lambda)$ be used to determine the length of all cycles (Ref. 1). To justify the use of $\phi(\lambda)$ or $\theta(\lambda)$ in determining the longest cycle length of FSRs associated with the T and A matrices, it must be shown that their characteristic and minimal polynomials are equal.

For any $n \times n$ matrix B, there exist elementary polynomial matrices $P(\lambda)$ and $Q(\lambda)$, such that

$$[P(\lambda)][B-\lambda I][Q(\lambda)] = \begin{bmatrix} d_1(\lambda) & 0 & \cdots & 0 \\ 0 & d_2(\lambda) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n(\lambda) \end{bmatrix}$$

$$(11)$$

where $d_1(\lambda)$, $d_2(\lambda)$, ..., $d_n(\lambda)$ are monic polynomials (see Ref. 6). The matrix $[B-\lambda I]$ satisfies (i.e., is a root of)

$$D(\lambda) = d_1(\lambda) d_2(\lambda), \ldots, d_n(\lambda)$$
 (12)

in which $d_i(\lambda) | d_{i+1}(\lambda)$ for $i = 1, \ldots, n-1$. The diagonal matrix (Eq. 11) is the *Smith canonical* form of B and $d_i(\lambda)$ for all i is a *similarity invariant* of B. The minimal polynomial of B is $d_n(\lambda)$. The characteristic polynomial of B is $D(\lambda)$. When $D(\lambda) = d_n(\lambda)$, B is said to be non-derogatory.

The Smith canonical form can be derived from $[B-\lambda I]$ without explicitly determining $P(\lambda)$ and $\phi(\lambda)$. The Smith canonical form is derived as follows for the T and A matrices.

a. The T matrix. Given the 4×4 $[T-\lambda I]$ matrix,

$$\begin{bmatrix} \lambda + C_3 & C_2 & C_1 & 1 \\ 1 & \lambda & 0 & 0 \\ 0 & 1 & \lambda & 0 \\ 0 & 0 & 1 & \lambda \end{bmatrix}$$
 (13)

Let the elementary transformations induced by $P(\lambda)$ or $Q(\lambda)$ be denoted as follows:

 C_{ij} is the interchange of columns i and j

 $C_{ij}(k)$ is the replacement of column i by column j plus k times column j

 r_{ij} , $r_{ij}(k)$ are corresponding row operations

(1)
$$C_{21}(\lambda)$$

(2) $r_{12}(\lambda + C_3)$
(3) $C_{32}(\lambda)$
(4) $r_{13}(\lambda^2 + C_3\lambda + C_2)$
(5) $C_{43}(\lambda)$

(6)
$$r_{14}(\lambda^3 \perp C_1\lambda^2 + C_2\lambda + C_1)$$

$$(7) r_{12}$$

(9)
$$r_{34}$$

reduces (13) to the Smith form

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \phi(\lambda) \end{bmatrix}$$
 (15)

where
$$D(\lambda) = \phi(\lambda) = m(\lambda) = \lambda^4 + C_1\lambda^3 + C_2\lambda^2 + C_1\lambda + 1$$
.

This procedure is readily extended to any $r \times r$ T matrix as shown in Eq. (3) of Section 2.

b. The A matrix. Given the 5×5 $[A-\lambda I]$ matrix,

$$\begin{bmatrix} \lambda + C_3 & C_2 & C_1 & 1 & 1 \\ 1 & \lambda & 0 & 0 & 0 \\ 0 & 1 & \lambda & 0 & 0 \\ 0 & 0 & 1 & \lambda & 0 \\ 0 & 0 & 0 & 0 & \lambda + 1 \end{bmatrix}$$
 (16)

The sequence of elementary transformations from 1 through 6 as shown in (14) results in

$$\begin{bmatrix} 0 & 0 & 0 & \phi(\lambda) & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda+1 \end{bmatrix}$$
 (17)

and continuing with

- (7) $C_{15}[\phi(\lambda)]$
- (8) $r_{51}(\lambda + 1)$
- (9) C₊₅
- (10) C:
- (11) C_{2} ;
- (12) C_{12}

reduces the matrix of (17) to

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & (\lambda + 1\phi(\lambda)) \end{bmatrix}$$

4. Feedback Configuration for Near-Maximal Linear FSRs

a. Derivatio:. of α characteristic polynomial for a cycle length of $2^{\kappa}-2$. Given the characteristic polynomial $g(\lambda)$ of degree r associated with a maximal-length r-stage linear FSR, then

$$\theta(\lambda) = (\lambda + 1)^2 g(\lambda)$$

is the characteristic polynomial of an (r+2)-stage linear FSR with a major cycle length of

$$2(2^{r}-1)$$
 or $2^{r+1}-2$

Since complementation of the feedback has the effect of introducing a factor of $\lambda+1$ in the characteristic polynomial, a cycle length of $2^{r+1}-2$ can be realized with an (r+1)-stage FSR, where

$$\phi(\lambda)^* = (\lambda + 1) g(\lambda)$$

For many values of r, a $g(\lambda)$ of degree r can be found such that $\phi(\lambda)^*$ is a tetranomial.

EXAMPLE 1:

$$g(\lambda) = \lambda^7 + \lambda^5 + \lambda^4 + \lambda^3 + \lambda^2 + \lambda + 1$$

$$\phi(\lambda)^* = (\lambda + 1) g(\lambda) = \lambda^{R} + \lambda^{7} + \lambda^{6} + 1$$
 (18)

$$\begin{array}{ll}
a_n = 1 \oplus a_{n-1} \oplus a_{n-2} \oplus a_n \\
a_n = a_{n-1} \oplus a_{n-2} \oplus a_n
\end{array} (19)$$

The characteristic polynomial (Eq. 18), or equivalently, the linear recurrence relationship (Eq. 19), characterizes a major cycle length of 254 (and a minor cycle length of 2) of an eight-stage linear FSR.

The binary coefficients (1 0 1 1 1 1 1 1 in Example 1) may be determined from Ref. 5 for every maximal-length feedback configuration. When a $g(\lambda)$ is selected such that the binary sequence of coefficients starts and ends with a run of *ones* separated by a run of *zeros*,

$$\phi(\lambda)^* = (\lambda \pm 1) g(\lambda)$$

results in a tetranomial.

In Example 1, $(\lambda + 1)$ $g(\lambda)$ can be determined from

$$g(\lambda) + \lambda g(\lambda)$$

as follows:

Table 1. Linear feedback configurations for FSR cycle lengths of $2^{\circ}-2$ and 2

8	i	i	2'-2
4	1	2	14
. 5	[1 ·	3	30
6	1 1	2	62
7	1	5	126
8] 1	2	254
9	2	6	510
10	2	3	1022
11	1	3	2046
12	2	7	4094
13	i -	-	_
14	1 1	2	16328
15] 3	5	32766
16	1	2	65534
17	1 1	11	131070
18	1	12	262142
19	1 1	7	524296
20] 1	14	1048574

As shown in Table 1, there is an s-stage linear three-tap FSR with a major cycle length of 2^s-2 for every value of s from 4 through 20. The only exception is for an s of 13.

Where possible, it is desirable to have the stage storing a_{n-1} connected to the feedback. This allows a simplification in the implementation of the feedback when using RS flip-flops as memory elements. If the leading run of *ones* in the binary coefficient of $g(\lambda)$ contains a single *one* as in Example 1, the feedback function for $(\lambda+1)$ $g(\lambda)$ will be

$$a_n \oplus a_n \oplus a'_n$$

Each feedback configuration tabulated in Table 1 has a minor cycle of length 2. The states of the minor cycles are:

S even	S odd	
0 1 0 1 0 1	0101010	
1010 10	1010 101	

b. Derivation of a characteristic polynomial for a cycle length of 2ⁿ - 4. The characteristic polynomial

$$\theta(\lambda) = (\lambda + 1)^3 g(\lambda)$$

where $g(\lambda)$ is of degree r and maximal is the characteristic polynomial of an (r+3)-stage linear FSR with a major cycle length of

$$4(2^r-1)$$
 or $2^{r+2}-4$

A major cycle length of $2^{r+2} - 4$ can be realized with an (r+2)-stage linear FSR. By complementing the feedback, a factor of $\lambda + 1$ is introduced. Thus,

$$\phi(\lambda)^* = (\lambda + 1)^2 g(\lambda) = (\lambda^2 + 1) g(\lambda)$$

characterizes a linear FSR with a major cycle length of $2^{r+2} - 4$ and a minor cycle length of 4.

EXAMPLE 3:

$$g(\lambda) = \lambda^a + \lambda^r + \lambda^a + \lambda^a + \lambda^4 + \lambda^2 + 1$$

$$\phi(\lambda)^* = (\lambda^z + 1) g(\lambda) = \lambda^{10} + \lambda^9 + \lambda^5 + 1 \qquad (20)$$

JPL SPACE PROGRAMS SUMMARY 37-44, VOL. IV

or

$$a_{n} = 1 \oplus a_{n-1} \oplus a_{n-5} \oplus a_{n-10}
 a_{n} = a_{n-1} \oplus a_{n-5} \oplus a'_{n-10}$$
(21)

The characteristic polynomial (Eq. 20), or equivalently, the linear recurrence relationship (Eq. 21), characterizes a major cycle length of 1020 (and a minor cycle length of 4) of 10-stage linear FSR.

When a $g(\lambda)$ is selected such that the binary sequence of coefficients either starts with a run of ones and ends with alternating zeros and ones (i.e., $1\ 1\ 0\ 1 \cdots 0\ 1$), or starts and ends with alternating subsequences separated by a run of zeros or ones, $\phi(\lambda)^* = (\lambda + 1)^2\ g(\lambda)$ results in a tetranomial. A $g(\lambda)$ of the first form yields a feedback configuration in which a_n , is fed back.

In Example 2, $(\lambda^2 + 1) g(\lambda)$ can be determined from $g(\lambda) + \lambda^2 g(\lambda)$ as follows:

Linear s-stage FSRs with a three-tap feedback configuration and a major cycle length of $2^s - 4$ are tabulated in Table 2. Values of s from 4 through 21 are included,

Table 2. Linear feedback configurations for FSR cycle lengths of 2'-4 and 4

8	i	i	2'-2
4	1	3	12
5	1	2	28
6	-	_	-
7	1	4	124
	-	_] -
9	1	2	50\$
10	1	5	1920
11	1	4	2044
12	1 1	3	4092
13	1	2	8188
14	-	-	
15	1	12	32764
16	1	7	65532
17	1	14	131068
18	5	9	262140
19	7	10	524284
20	5	7	1048572
21	1	•	2097148

with the exception of 6, 8, and 14 which do not exist with three feedback taps (i.e., which can be characterized with tetranomials).

Each feedback configuration tabulated in Table 2 has a minor cycle of length 4. The states of the minor cycle are:

c. Implementation of near-maximal linear FSRs. As shown in Tables 1 and 2, a near-maximal cycle length can be realized with a feedback function of the form

$$a_{n-1} \oplus a_{n-1} \oplus a'_{n-1}$$

for values of s from 4 through 21.

Substituting q_i for a_{n-1} , the next state of the leftmost memory element may be expressed as

$$Q_1 = q_1 \oplus q_2 \oplus q_2' \tag{22}$$

Given RS flip-flops with the characteristic equation

$$Q = S' + Rq$$

where

$$R'S' = 0$$

the minimized R_1 and S_1 inputs for the flip-flops whose next state is Q_1 are:

(1)
$$i = 1$$

$$R_1 = (q_1 q_1' q_2' + q_1 q_2 q_3)'$$

$$S_1 = (q_1' q_2' q_3' + q_1' q_2 q_3)'$$
(2) $i \neq 1$

(2)
$$i \neq 1$$

$$R_1 = q_i' q_j q_s + q_i q_j' q_s + q_i q_j q_s' + q_i' q_j' q_s'$$

$$S_1 = R_1'$$

Thus, the cost of the feedback network is four NAND gates when i = 1 and five NAND gates when $i \neq 1$.

Provision for common collector operation (i.e., NAND-AND) is assumed.

When a maximal-length cycle of $2^r - 1$ cannot be realized with r stages, a near-maximal length of $2^r - 2$ or $2^r - 4$ may be realized with r stages and as few as four NAND gates which comprise the feedback network. (Two-tap feedback networks for maximal-length linear

FSRs require two NAND gates when q_1 is fed back, or three NAND gates otherwise.)

For example, there is no 12-stage, two-tap feedback configuration that yields a maximal length of 4095 (see Ref. 2). However, the near-maximal length of 4092 can be realized with 12 memory elements and four NAND gates (see Table 2).

References

- 1. Elspas, B., "The Theory of Autonomous Linear Sequential Networks," IRE Transactions on Circuit Theory, Vol. CT-6, pp. 45-60, March 1959.
- 2. Golomb, S. W., Welch L. R., and Hales, A., On the Factorization of Trinomials Over GF(2). Memorandum 20-189, Jet Propulsion Laboratory, Pasadena, Calif., July 1959.
- 3. Birkhoff, G., and MacLane, S., A Survey of Modern Algebra, The MacMillan Company, New York, 1941.
- Golomb, S. W., Sequences With Randomness Properties, Engineering Report 6193, The Martin Company, Engineering Laboratory, Baltimore, Md., June 14, 1955.
- Marsh, R. W., Table of Irreducible Polynomials Over GF(2) Through Degree 19, OTS:PB-161,693, U. S. Department of Commerce, Office of Technical Services, Washington, D. C., October 24, 1957.
- 6. Albert, A. A., Fundamental Concepts of Higher Algebra, University of Chicago Press, Chicago, Ill., 1956.